Nr. |
Presentation |
Slides |
Time |
Update |
Book Ch. |
Topics |
Slide No. |
|
1 |
Course
1- part 1 |
53 |
90 |
Feb 09 |
2 |
Building regression
models-
general issues |
sl.
7- 15 |
|
|
|
|
|
|
|
Methods for variable
selection |
sl. 16- 29 |
|
|
|
|
|
|
|
Selection bias, shrinkage |
sl. 30- 43 |
|
|
|
|
|
|
|
Reporting |
sl. 46- 49 |
|
2 |
Course
1- part 2 |
75 |
90 |
Feb 09 |
3.7; 6.4; 5.5; |
Univariate smoothing
problem |
sl. 10- 15 |
|
|
|
|
|
|
7.4; 8.7 |
FPs |
sl. 16- 32 |
|
|
|
|
|
|
|
MFP |
sl. 33- 41 |
|
|
|
|
|
|
|
Presentation |
sl. 42- 44 |
|
|
|
|
|
|
|
Robustness |
sl. 46- 52 |
|
|
|
|
|
|
|
Stability |
sl. 54- 58 |
|
|
|
|
|
|
|
Interaction (with
treatment) |
sl. 59- 67 |
|
|
|
|
|
|
|
Software |
sl. 71- 73 |
|
3 |
General |
65 |
90 |
Feb 09 |
2; 8.8 |
Regression models |
sl. 3- 15 |
|
|
|
|
|
|
|
Methods for variable
Selection |
sl. 16- 23 |
|
|
|
|
|
|
|
Selection bias, shrinkage |
sl. 24- 34 |
|
|
|
|
|
|
|
Continuous Variables-
Functional Form |
sl. 35- 45 |
|
|
|
|
|
|
|
MFP |
sl. 46- 55 |
|
|
|
|
|
|
|
Splines |
sl. 56- 58 |
|
4 |
MFP-
1 |
55 |
90 |
Feb 09 |
3.7; 4.13; 5.5 |
Curve Fitting |
sl. 9- 13 |
|
|
|
|
|
|
|
FPs |
sl. 14- 22 |
|
|
|
|
|
|
|
FP vs Splines |
sl. 23- 29 |
|
|
|
|
|
|
|
MFP |
sl. 30- 37 |
|
|
|
|
|
|
|
Robustness |
sl. 39- 40 |
|
|
|
|
|
|
|
Stability |
sl. 43- 47 |
|
|
|
|
|
|
|
Presentation |
sl. 48- 49 |
|
5 |
MFP-
2 |
29 |
40 |
Feb 09 |
|
Regression models |
sl. 4- 7 |
|
|
|
|
|
|
|
Variable Selection |
sl. 8- 10 |
|
|
|
|
|
|
|
Continuous Variables-
Functional Form |
sl. 11- 13 |
|
|
|
|
|
|
|
FPmodels |
sl. 14- 20 |
|
|
|
|
|
|
|
MFP |
sl. 21- 23 |
|
6 |
MFP- 3
* |
20 |
|
Feb 09 |
3.4 |
Continuous risk variables |
sl. 3- 10 |
|
|
|
|
|
|
|
FPmodels |
sl. 11- 17 |
|
|
|
|
|
|
|
MFP |
sl. 18- 20 |
|
7 |
Progn.
Factors * |
45 |
60 |
Feb 09 |
3.4; 7.4 |
Prognostic factor studies |
sl. 3- 7 |
|
|
|
|
|
|
|
Optimal Cutpoints |
sl. 8- 14 |
|
|
|
|
|
|
|
FP |
sl. 15- 26 |
|
|
|
|
|
|
|
Interaction (with
treatment) |
sl. 27- 35 |
|
|
|
|
|
|
|
Reporting |
sl. 36- 42 |
|
8 |
Categorization
* |
25 |
|
Feb 09 |
|
Cutpoints |
sl. 2- 11 |
|
|
|
|
|
|
|
FP + MFPI |
sl. 12- 20 |
|
9 |
Interaction |
83 |
90 |
Feb 09 |
7; 11.1 |
Regression models and
model
building |
sl. 3- 13 |
|
|
|
|
|
|
|
FP |
sl. 14- 20 |
|
|
|
|
|
|
|
MFP |
sl. 21- 30 |
|
|
|
|
|
|
|
Interactions |
|
|
|
|
|
|
|
|
Binary |
sl. 33- 48 |
|
|
|
|
|
|
|
Two Continuous
Variables |
sl. 49- 60 |
|
|
|
|
|
|
|
Time (non- proportiona) |
sl. 61- 76 |
|
10 |
MFPI |
21 |
30 |
Feb 09 |
7.4; 7.8-7.10 |
STEPP |
sl. 5- 8 |
|
|
|
|
|
|
|
MFPI |
sl. 9- 19 |
|
11 |
MFPIgen |
49 |
60 |
Feb 09 |
7.11; 7.3; 7.4 |
General issues in
regression models |
sl. 3- 9 |
|
|
|
|
|
|
|
FP |
|
|
|
|
|
|
|
|
univariate |
sl. 12- 18 |
|
|
|
|
|
|
|
multivariate |
sl. 19- 27 |
|
|
|
|
|
|
|
Interaction |
|
|
|
|
|
|
|
|
Binary |
sl 30- 35 |
|
|
|
|
|
|
|
Two continuous |
sl. 36- 42 |
|
12 |
MFPT-
1 |
32 |
60 |
Feb 09 |
11.1 |
Non- PH |
sl. 4- 6 |
|
|
|
|
|
|
|
FP |
sl. 7- 12 |
|
|
|
|
|
|
|
MFPT |
sl. 15- 30 |
|
13 |
MFPT-
2 |
21 |
30 |
Feb 09 |
11.1 |
Non- PH |
sl. 4- 9 |
|
|
|
|
|
|
|
MFPT |
sl. 10- 16 |
|
14 |
MFPT-
3 * |
20 |
30 |
Feb 09 |
11.1. |
Non- PH |
sl. 5- 10 |
|
|
|
|
|
|
|
MFPT |
sl. 11- 15 |
|
15
|
Robustness
|
17 |
25 |
Feb
09 |
5.5 |
nothing needed |
|
|
16 |
MFPspike |
22 |
19 |
Feb 09 |
4.15 |
Motivation |
sl. 2- 4 |
|
|
|
|
|
|
|
Theoretical results |
sl. 5- 8 |
|
|
|
|
|
|
|
FP spike |
sl. 11- 21 |
|